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First total syntheses of Nod factors of Bradyrhizobiumjaponicum were described in a stereo- and regio-controlled 
manner. 
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Bradyrhizobium japonicum is a soil bacterium that forms 
nitrogen-fixing nodules specifically on the roots of the 
agronomically significant legume soybean. In 1992, Sanjuan 
et al. [2] reported the isolation and chemical characteriza- 
tion of a metabolite that was produced by B. japonicum 
strain USDA110 (Type I strain) and that is responsible for 
an early event of the nodulation process on the host legume. 
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The structure was proposed to be a iipohexasaccharide 
1, or NodBj-V (Cls:l, MeFuc) [3]. The structure of the 
isolated fatty acid was proposed [2] as oleic acid by 
oxidation to a diol and EIMS analysis of its derivatives. In 
1993, Carlson et al. [4] reported the structures and the 
biological activities of lipooligosaccharide nodulation 
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signals (2, 3 and others) produced by B. japonicum 
USDA 135 (Type I strain) and B. japonicum USDA61 (Type 
II strain). In order to clarify the structural requirements for 
the lipooligosaccharide to induce necessary morphological 
differentiation on the root of the host plants, synthetic 
analogues of these lipooligosaccharides are required. As 
part of our synthetic projects [5] on plant-physiologically 
active glycoconjugates, we describe here synthetic ap- 
proaches to B. japonicum nodulation signals 1, 2 and 3. A 
versatile synthetic strategy was designed by use of a 
completely deprotected oligosaccharide 4 with a free amino 
function as a key precursor for the target molecules. The 
precursor then should be acylated with an activated fatty 
acid at the final step [6], so that final target molecules may 
carry any kind of fatty acid of our choice. Further bond 
disconnection of compound 4 led us to design two glycosyl 
donors 5 and 7 and a glycotetraosyl glycosyl acceptor 6. 

Glycosylation of compound [6] was carried out in the 
presence of CpzHf(OTf)2 [7, 8] and powdered molecular 
sieves 4A (MS4A) in (C1CH2) 2 at - 23  ° with 1.5 equivalents 
of fluoride 10 readily obtainable from compound 9 [6] by 
treatment with DAST [8] to give 86% of 11, which was 
saponified with NaOMe in 1:1 MeOH-THF to give 84% 
of a glycosyl acceptor 12. Glycosyl donor 14 was prepared 
in 88% from already reported [9] chitobiosyl derivative 13 
by treatment with DAST in (C1CH2)2. Glycosylation of 12 
with 1.5 equivalents of 14 was performed according to 
Suzuki procedure as described above to give 99~o of 
tetrasaccharide 15 that was, in turn, converted into the 
designed key intermediate 6 in two steps in 75% overall; 1, 
NHzNH2.H20  in EtOH, reflux; 2, Ac20 in MeOH. 
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Further chain elongation was carried out by use of a 
glycosyl donor 5 that was prepared in a quantitative yield 
from reported compound 16 [10] by treatment with DAST. 
Glycosylation of 6 with 5 as described above gave 80% of 
17 that was, in turn, treated with four equivalents of 
(NH4)eCc(NO3) 6 (CAN) [11] in 3:1 CH3CN-H20 to afford 
79% of 18. 

Having prepared a pentasaccharide back-bone 18, crucial 
stereoselective introduction of e-L-fucosyl residue at 0-61 
should be exploited. Fucosyl donor 7 was prepared from 
methylthio fl-L-fucopyranoside [12] in four steps in 59% 
overall; 1, MezC(OMe)/, TsOH.H20  in Me2CO; 2, MeI, 
Nai l  in DMF; 3, 90% TFA in (CH2C1)2 ; 4, p-Me- 
C6H4COC1 in Py. Coupling of 7 with 19 was achieved in 
a stereocontrolled manner in the presence of CuBr2- 
Bu4NBr-MS4A [13] in CH3NO / to give 65% of 19 and no 
/%isomer could be detected by tlc. Compound 19 was 
efficiently converted into the designed precursor 4 via 20 in 
two steps in 90% overall; 1, NH2NH2.H/O in EtOH, 
reflux; 2, Pd(OH)2-C , H2 in 80% aq.MeOH. Treatment of 

4 with 9Z and l lZ-octadecenoyl N-hydroxysuccinimide 
and subsequent purification by Bond Elute C18 [-14] 
afforded the target molecules 1 (37%) and 2 (33%), 
respectively. 1H-NMR data were in good agreement with 
those of natural 1 [2] and related compounds [4], thus 
providing synthetic evidence for the proposed structures. 

Another Nod factor NodBj-IV (C18:1, MeFuc) 3 con- 
taining one less N-acetyl-D-glucosamine residue could 
readily be synthesized by employing already reported [6] 
tetrasaccharide glycosyl acceptor 21 and fucosyl donor 7. 
Thus coupling between 21 and 7 was achieved stereo- 
selectively under the conditions as described above to give 
68% of 22 which was further converted into 3 via 23 and 
24 in three steps in 41% overall as described for 2. 

In summary, lipooligosaccharide nodulation signals 1, 2, 
and 3 produced by type 1 and type 2 strains of Bradyrhizo- 
bium japonicum were synthesized for the first time in a 
regio- and stereo-control manner employing either glyco- 
tetraosyl 21 or glycopentaosyl intermediate 18 as a key 
glycosyl acceptor. 
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Table 1. Physical data for novel compounds. 

Compounds R v [ '~ ' ]  D a 1H-NMRa (6l~) 

1 0.46 in 2:1:1 "BuOH-EtOH-H20 

4 (n = 3) 

0.46 in 2:1:1 "BuOH-EtOH-H20 

0.58 in 2:1:1 "BuOH-EtOH-H20 

0.04 in 2:1:1 nBuOH-EtOH-HzO -6 .3  ° (4:1 MeOH-H20  , c 0.3) 

5 0.40 in 3:2 hexane-EtOAc +74.5 ° (c 0.5) 
6 0.40 in EtOAc -43.1 ° (c 0.2) 

7 0.42 in 2:1 hexane-EtOAc - 171.5 ° (c 0.7) 

10 0.38 in 3:2 hexane-EtOAc +85.5 ° (c 0.6) 

11 0.37 in 1:1 hexane-EtOAc +33.7 ° (c 1.1) 

12 0.33 in 1:1 hexane-EtOAc + 15.4 ° (c 1.2) 

14 0.40 in 1:1 hexane-EtOAc +43.1 ° (c 0.3) 

15 0.37 in 4:1 PhMe-EtOAc + 35.4 ° (c 0.4) 

17 0.32 in 1:1 EtOAc-hexane -29.3  ° (c 0.5) 

18 0.32 in 1:2 hexane-Me2CO -37.0  ° (c 0.6) 

19 0.44 in 2:3 hexane-EtOAc -52.8 ° (c 0.5) 

20 0.56 in 8:1 CHCI3-MeOH -38.8 ° (MeOH, c 0.5) 

22 0.37 in 2:3 hexane-Me2CO -15.0  ° (c 0.1) 

23 0.67 in 8:1 CHC13-MeOH -46.5 ° (MeOH, c 0.5) 

0.07 in 2:1:1 "BuOH-EtOH-H20 24 - 29.2 ° (4:1 MeOH-H20,  c 0.6) 

in DMSO-d6:5.32 (m, CH- -CH) ,  4.93 (d, 3.4 Hz, 
1Fuc), 4.84 (bs, 11), 4.30-4.40 (m, 12"3'¢'5), 1.80 
(s, 4 x Ac), 1.05 (d, 6.4 Hz, 6Fuc), 0.84 (t, 5.9 Hz, 
CH2CH3). 

in DMSO-d6:5.31 (m, C H ~ C H ) ,  4.93 (d, 
3.4 Hz, lr"c), 4.84 (bs, 11), 4.35-4.40 (m, 
12'3'¢'5), 3.56 (s, OMe), 1.05 (d, 6.4 Hz, 6Fuc), 
0.84 (t, 5.8 Hz, CH2CH3). 

in DMSO-d6:5.32 (m, C H ~ C H ) ,  4.93 (d, 
3.9 Hz, leUC), 4.84 (bs, 11), 4.30-4.40 (m, 12'3'4), 
1.82, 1.80, and 1.80 (3s, 3 × Ac), 1.05 (d, 6.9 Hz, 
6F"c), 0.84 (t, 6.3 Hz, CH2CH3). 

in D20:5.16 (d, 3.3 Hz, le"c), 3.503 (s, OMe), 
2.058, 2.053, 2.054, and 2.028 (4s, 4 x Ac), 1.20 
(d, 6.3 Hz, 6rue). 

5.87 (dd, 7.9 and 53.5 Hz, H-l)  
6.45, 5.84, and 5.19 (3d, 9.5, 9.5, and 9.2 Hz, 

respectively, 3 × NHAc), 3.75 (s, OMe), 1.98, 
1.76, 1.74, and 1.74 (4s, 4 × Ac). 

5.61 (d, 3.6 Hz, H-4), 5.31 (dd, 3.6 and 9.9 Hz, 
H-3), 4.47 (d, 9.6 Hz, H-I), 3.52 (s, OMe), 2.44, 
2.36, and 2.34 (3s, 3 × Me), 1.28 (d, 6.6 Hz, 
H-6). 

5.87 (dd, 8.6 and 53.0 Hz, H-l), 5.21 (t, 8.6 Hz, 
H-4), 1.96 (s, Ac). 

5.29 (d, 8.3 Hz, 12), 5.12 (t, 8.8 Hz, 42), 4.99 (d, 
8.3 Hz, 11), 3.79 (s, OMe), 1.91 (s, Ac). 

5.28 (d, 7.8 Hz, 12), 4.99 (d, 7.8 Hz, 11), 3.79 (s, 
OMe). 

5.69 (dd, 7.8 and 53.7 Hz, 11), 5.33 (d, 8.3 Hz, 12), 
5.16 (t, 9.3 Hz, 42), 1.93 (s, Ac). 

5.28 (d, 8.2 Hz, 14), 5.12 (t, 9.2 Hz, 44), 5.08, 5.06, 
and 4.91 (3d, 7.0, 8.2, and 8.2 Hz, respectively, 
for 12'3'4), 3.74 (s, OMe), 1.88 (s, Ac). 

6.45, 5.91, and 5.24 (3d, 9.2, 9.8, and 9.2 Hz, 
3 × NHAc), 5.20 (d, 8.2 Hz, 15), 3.74 (s, OMe), 
1.96, 1.73, 1.72, and 1.69 (4s, 4 × Ac). 

6.47, 5.66, and 5.50 (3d, 10.7, 7.9, and 7.6 Hz, 
respectively, 3 x NHAc), 5.22 (d, 8.5 Hz, 15), 
1.90, 1.85, 1.81 and 1.66 (4s, 4 x Ac). 

5.56 (dd, 3.5 and 10.3 Hz, 3F"c), 5.51 (d, 3.5 Hz, 
4v"c), 5.18 (d, 8.3 Hz, 15), 5.03 (d, 3.4 Hz, lv"C), 
3.26 (s, OMe), 2.45 and 2.34 (2s, MeBz), 1.98, 
1.91, 1.75, and 1.71 (4s, 4 × Ac), 0.89 (d, 6.8 Hz, 
6F,c). 

3.52 (s, OMe), 1.873, 1.824, 1.816, and 1.816 (4s, 
4 × Ac), 1.13 (d, 6.4 Hz, 6v"c). 

5.04 (d, 3.9 Hz, 1F"~), 3.31 (s, OMe), 2.46 (s, 
2 × MeBz), 2.01, 1.99, 1.92, 1.89, 1.86, and 1.80 
(6s, 6 x Ac), 0.93 (d, 6.8 Hz, 6vuc). 

in CD3OD: 4.99 (d, 3,9 Hz, lV"~), 3.52 (s, OMe), 
1.93, 1.88, and 1.82 (3s, 3 x Ac), 1.13 (d, 6.9 Hz, 
6r,~). 

in De0:4.94 (d, 2.9 Hz, lV"~), 1.84, 1.83, and 1.81 
(3s, 3 × Ac). 

"Values of [~]t~ and 6 n were recorded at 25 ° + 3 ° for solutions in CHC13 and CDC1 a, respectively, unless otherwise indicated. Signal assignment for 
1H-NMR such as H-32 stands for a proton at C-3 of sugar residue 2. 
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